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The statistical physics of homogeneous DNA is investigated by the imaginary time path integral formalism.
The base pair stretchings are described by an ensemble of paths selected through a macroscopic constraint, the
fulfillment of the second law of thermodynamics. The number of paths contributing to the partition function
strongly increases around and above a specific temperature Tc

�, whereas the fraction of unbound base pairs
grows continuously around and above Tc

�. The latter is identified with the denaturation temperature. Thus, the
separation of the two complementary strands appears as a highly cooperative phenomenon displaying a smooth
crossover versus T. The thermodynamical properties have been computed in a large temperature range by
varying the size of the path ensemble at the lower bound of the range. No significant physical dependence on
the system size has been envisaged. The entropy grows continuously versus T while the specific heat displays
a remarkable peak at Tc

�. The location of the peak versus T varies with the stiffness of the anharmonic stacking
interaction along the strand. The presented results suggest that denaturation in homogeneous DNA has the
features of a second-order phase transition. The method accounts for the cooperative behavior of a very large
number of degrees of freedom while the computation time is kept within a reasonable limit.
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I. INTRODUCTION

Path integral methods provide a powerful tool to investi-
gate the properties of nonlinear dynamical systems with re-
tarded interactions. Hamiltonian models with nonlocal
electron-phonon couplings, used in polymer science �1�,
have been studied by such methods. In this paper the path
integral approach �2� is applied to analyze the temperature-
driven DNA denaturation which occurs when the double
stranded molecule separates into two coils while, at lower T,
only localized openings exist �3�. Modeling of DNA melting
has been motivated since long by the need to understand the
transcription mechanism in which the double helix opens
locally to allow a reading of the genetic code. In this regard,
the Poland-Scheraga model �4� has been path breaking and
still makes the base of several investigations �5–10�. Despite
extensive analytical and numerical work �11–16�, establish-
ing character and nature of the melting phase transition,
whether first or second order, remains a challenging task
�17�. A significant advance toward a comprehension of the
DNA dynamics was made after Peyrard and Bishop �PB�
introduced a one-dimensional �1D� Hamiltonian model �18�
which recognized the role of nonlinearities in the molecule
�19� and reduced its great complexity to two essential inter-
actions: �i� a nonlinear coupling between the two bases in a
pair connected by hydrogen bonds, �ii� a harmonic stacking
potential between adjacent bases along the strand. While so-
lutions based on the transfer integral method �20� predicted a
smooth denaturation transition both for homogeneous and
heterogeneous DNA �21�, extensions of the PB model
�22,23� which include anharmonic stacking interactions
showed that the denaturation can be sharp, occurs at lower T
than in the harmonic case, and it is indeed a thermodynamic
transition �24�. The latter statement does not contradict gen-
eral theorems on the impossibility of phase transitions in 1D

systems �25� as the PB Hamiltonian contains an on-site po-
tential depending on unbounded transverse stretchings.
Moreover, in the thermodynamic limit, the energy of a do-
main wall between two states of the molecule is infinite and
an ordered state is then possible �26�.

As the anharmonic PB model is assumed as fundamental
tool, it is understood that the emphasis of the present inves-
tigation is purely on modeling the unbinding of the two
strands versus temperature. This is done by capturing the
essentials of the interactions consistently with the spirit of
the theory of critical phenomena.

The PB Hamiltonian model is outlined in Sec. II focusing
on those properties which make reliable to attack the prob-
lem by path integral techniques. Section III describes the
method while the results concerning the character of the de-
naturation transition are discussed in Sec. IV. Some conclu-
sions are drawn in Sec. V.

II. HAMILTONIAN MODEL

To begin, I consider a fragment of homogeneous DNA
whose strands are represented by a set of point masses cor-
responding to the nucleotides. The Hamiltonian �22� for a
chain of N base pairs �bps� with mass � reads

H = �
n=1

N ��ẏn
2

2
+ VS�yn,yn−1� + VM�yn�� ,

VS�yn,yn−1� =
K

2
g�yn,yn−1��yn − yn−1�2,

g�yn,yn−1� = 1 + � exp�− ��yn + yn−1�� ,

VM�yn� = D�exp�− ayn� − 1�2, �1�

where yn, the transverse stretching for the n-bp, measures the
relative pair separation from the ground-state position and*marco.zoli@unicam.it
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continuously grows from 0 �closed bp� to � �open bp after
denaturation occurs�. As the hydrogen bond can be com-
pressed with respect to the equilibrium, yn takes also nega-
tive values with a lower cutoff accounting for the repulsive
interaction of the phosphate groups. The longitudinal dis-
placements are neglected in the model as their amplitudes are
much smaller than the transverse stretchings �3,27�. D and a,
setting depth and width of the Morse potential VM�yn�, are
site independent for homopolymer DNA. In the stacking po-
tential VS�yn ,yn−1�, the factor g depends on the sum of the
stretchings of two adjacent bases. K=��2 with � being the
harmonic phonon frequency. For �=0 in Eq. �1�, the statis-
tical mechanics can be worked out exactly through the trans-
fer operator method �20�, which, in continuum approxima-
tion and strong K limit, defines a pseudo-Schrödinger
equation for a particle in a Morse potential �28�. The latter
has a discrete spectrum with localized eigenfunctions at T
�Tc being

Tc =
2�2KD

KBa
, �2�

the temperature at which the lowest eigenvalue vanishes and
even the ground state merges into the continuum. KB is the
Boltzmann constant. For T�Tc only delocalized states exist.
Thus, even the simplest harmonic stacking model shows that
a transition occurs and Tc is identified as the temperature at
which the strands separate. Taking typical values for DNA
parametrization �3,29� such as D=30 meV, a=4.2 Å−1 and
K=60 meV Å−2, one gets Tc=331 K. Anharmonicity ��
�0� has a special meaning in DNA stacking. While the ana-
lytical form of g may not be unique in order to reproduce the
denaturation transition �30�, the key property of the stacking
potential is the following: whenever either one of the bps is
stretched over a distance larger than �−1, the hydrogen bond
breaks and the electronic distribution around the two pair
mates is modified. Accordingly, the stacking coupling �along
each strand� between neighboring bases in Eq. �1� drops
from K�1+�� to K. Then, also the next bp tends to open as
both bases are less closely packed along their respective
strands. Here is the cooperative character which underlines
the formation of a region with open bps, a bubble whose size
increases with T. In heterogeneous DNA, also the length of
the sequence may affect the probability to open a bubble
which is quantified in polymer network theories by the co-
operativity parameter 	: for sequences of intermediate
length �up to 	104 bps�, a small 	 �	10−4–10−5� generally
suppresses bubble formation while large portions of the helix
unbind close to the melting making the transition highly co-
operative �31–33�. For long sequences, 	 is larger and small
bubbles may form already below the transition which ac-
cordingly is expected to be less cooperative.

When the stacking decreases the vibrational mode be-
tween the two bases softens, thus reducing its contribution to
the free energy. Then, as confirmed by molecular-dynamics
simulations �28�, the denaturation onset is signaled by a pho-
non mode softening which, in general �34,35�, may point to
the occurrence of a phase transition. For these reasons, an-
harmonic stacking models well account for cooperativity ef-

fects in the formation of open domains. Being the latter a
collective phenomenon, computational methods have to in-
clude hundreds of base pairs in order to study the dynamics
even of a molecule fragment and this requires considerable
computational power. These facts suggest that models at in-
termediate scales are important and motivate the idea to in-
vestigate the DNA denaturation by path integral techniques.

III. PATH INTEGRAL METHOD

The path integral formalism defines the time �t� evolution
amplitude between two points, say “a” and “b,” as a sum
over all histories along which a system can evolve in going
from “a” to “b.” Each history is weighed by a phase factor,
the exponential of the action associated to a given path �36�.
At finite temperature, the thermal properties of the system
can be derived by weighing the contributions by the particle
paths x�
� running along the imaginary time axis 
, after an
analytic continuation is performed: 
= it. Accordingly, in the
statistical formalism, the Euclidean action A�x�
�� replaces
the mechanical canonical action and the partition function is
an integral in the path phase space. Each path is weighed by
a probability factor exp
−A�x�
���. Only closed paths con-
tribute to the statistical partition function, the integration be-
ing a trace integration �37�. In the calculations, not all histo-
ries can be accounted for and, given the specific problem,
one has to select the suitable class of paths which mainly
contribute �are expected to contribute� to the physical prop-
erties.

For the model in Eq. �1�, the path integral description
naturally follows by replacing the bps transverse stretching
by a one dimensional path x which is continuous function of

. Accordingly, the space interaction are mapped onto the
time scale as

yn → x�
�, yn−1 → x�
��, 
� = 
 − �
 , �3�

with 
� �0,�� and � being the inverse temperature. While
only adjacent bases are taken in Eq. �1�, the stacking inter-
actions range can be varied in the path integral model by
tuning the retardation �
 in Eq. �3�. The discrete lattice na-
ture of the Hamiltonian is maintained by the replacement in
Eq. �3�. In fact, for any �, the computation is made conver-
gent by taking a large but finite number N
 of points in the 

range. The path x�
� is further expanded in Fourier series
with cutoff MF

x�
� = x0 + �
m=1

MF

�am cos�m
� + bm sin�m
�� �4�

and m=2m� /�. As x�0�=x���, periodic boundary condi-
tions hold for the present method analogously to those im-
posed for the 1D finite chain described by Eq. �1�. The heart
of the matter lies in summing over a suitable set of paths
such that the computation of the thermodynamical properties
becomes sufficiently accurate. As explained hereafter, the se-
lection of the paths ensemble mainly contributing to the par-
tition function is done on the base of physical constraints. By
Eq. �3�, the index n maps onto a single 
 value and, by Eq.
�4�, for any 
 an ensemble of path coefficients is taken in the
computation.
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The imaginary time partition function �2� is given by

Z =� Dx�
�exp
− A�x�
��� ,

A�x�
�� = 
0

�

d
��

2
ẋ�
�2 + V�x�
��� ,

� Dx�
� �
1

�2��

 dx0�
m=1

MF �m�

��
�2 dam dbm, �5�

where A�x�
�� is the Euclidean action for a particle in the
potential V�x�
��. Dx�
� is the measure of integration which
normalizes the free particle action

� Dx�
�exp�− 
0

�

d

�

2
ẋ�
�2� = 1 �6�

and � denotes integration over closed particle trajectories
consistently with periodic boundary conditions holding for
paths in Eq. �4�.

�� is the thermal wavelength whose form depends on the
model whether quantum or classical. DNA denaturation oc-
curs at temperatures for which a classical model applies.
Then, the time derivative ẏn �Eq. �1�� maps onto the imagi-
nary time derivative ẋ�
� �Eq. �5��, the proper replacement
being: d /dt→ ����d /d
, hence, ��=�� /�K. Note that the
pseudo-Schrödinger equation is also solved in a classical
framework with � replaced by ����−1.

Applying Eq. �3� to the Hamiltonian in Eq. �1�, Z in Eq.
�5� transforms into

Z =
1

�2��


−U0

U0

dx0�
m=1

MF � 1

�


−U

U

dsm
−U

U

dtm

�exp�− sm
2 − tm

2 �E�x0,sm,tm�� ,

E�x0,sm,tm� = exp�− 
0

�

d
V�
�x�� ,

V�
�x� = VM�x� + VS�x,x�� ,

VM�x� = D�exp�− ax� − 1�2,

VS�x,x�� =
K

2
g�x,x���x − x��2,

g�x,x�� = 1 + � exp�− ��x + x��� ,

x � x�
�; x� � x�
�� ,

sm
2 �

m2�3am
2

��
2 ; tm

2 �
m2�3bm

2

��
2 , �7�

where the measure has been written in a form suitable for
computation by introducing the cutoffs U0 and U on the Fou-

rier coefficients integrals �38�. By inserting the expansion in
Eq. �4�, the left-hand side of Eq. �6� transforms into a prod-
uct of Gaußian integrals. Normalization of the latter gives
the mathematical criterion to set U0 and U through the con-
ditions

1
�2��


−U0

U0

dx0 = 1,

1
��


−U

U

dsm exp�− sm
2 � = 1. �8�

While U0 is set by the first in Eq. �8�, U can be deter-
mined after a series expansion for the Gaußian integral �39�
is applied to the left-hand side in the second of Eq. �8�.
However, there is no a priori reason why the mathematical
cutoffs had to fulfill also the physical requirements of the
problem in Eq. �7�. In fact, as extensively discussed below,
too negative Fourier coefficients would induce large negative
path amplitudes and diverging VM which, in turn, would
yield zero contribution to Z. Such paths, although allowed by
Eq. �8�, have therefore to be discarded as their inclusion in
the computation would produce a decreasing entropy versus
T. While this event cannot be accepted on general physical
grounds, it also provides clue to solving consistently the cut-
off problem: imposing the second law of thermodynamics, I
solve the path integral in Eq. �7� selecting at any T the suit-
able path ensemble for the transverse stretchings. Let us see
in detail the technicalities of the method.

Besides the five model potential parameters, namely, D, a,
K, �, and �, the path integral method contains some intrinsic
input parameters. The latter are �a� the cutoff MF, �b� the
retardation �
, �c� the number of points N
 for the d
 integral
in Eq. �7�, �d� the number of integration points over the
Fourier coefficients x0, sm, and tm.

�a� MF=1 suffices to make the calculation convergent in
the sense that Z would not change by taking MF=2. This
result can be understood as follows: the inclusion of higher
Fourier components leads to larger �absolute� values for the
path amplitudes but VM takes care of suppressing paths that
leave the reasonable boundaries. While there is no reason to
include paths whose fate is that of being suppressed, a proper
ensemble of paths can be built by taking a sufficiently high
number of integration points for the first Fourier component
in a sufficiently broad range. This ensures that the program
samples a large portion of the phase space in which all the
relevant path amplitudes are accounted for. Incidentally, the
�MF=1� strategy also permits to save a great amount of com-
puting time.

�b� This investigation is restricted to adjacent bps interac-
tions along the strand. Accordingly, 
 and 
� in Eq. �3� are
first neighbors in the discrete imaginary time lattice and the
retardation is �
=� /N
.

�c� N
=100 suffices to make the action numerically
stable. This value also sets the number of bps as N
 coincides
with N in Eq. �1� due to the mapping in Eq. �3�. While N
=100 is a �minimal� reliable choice for a cooperative phe-
nomenon such as denaturation, it turns out that larger N
 �N�
would not change anything in the computation of Eq. �7�. At
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this stage, the reader may wonder whether and how the path
integral method can account for those finite-size effects
�40,41�, which are considered relevant in studies of the DNA
properties. The fact is that for the present method, N is not
the exclusive tuning parameter in order to set the system size,
the latter being rather determined by the total number of
paths allowed for the N-bps. Thus, although N is kept con-
stant, the system size may still increase/decrease by consid-
ering a larger/smaller path ensemble which eventually works
as the true scaling parameter in the path integral method.
Here, we see the deep meaning of the method underlied by
the mapping in Eq. �3�. The n-bp maps onto an effective
ensemble of paths Neff taken at a specific 
. The latter may be
viewed in itself as an ensemble of base pairs. As this holds
for any of the N
 points, the true scaling parameter turns out
to be N
 ·Neff.

�d� Taking one Fourier component, the program evaluates
at any T the contribution to Z by three integrals over Fourier
coefficients in Eq. �7�. If, for a given number of integration
points, the increasing entropy constraint is fulfilled then the
good paths are included in the computation. The number of
good paths for a single 
 is Neff. The total number of good
paths over which computations are carried out is N
 ·Neff.

Clearly, the computing time depends on the number of
paths required to stabilize the system. Many paths should
contribute to the thermodynamical properties consistently
with the previous observations regarding the cooperativity
behavior in the double helix. Such number is expected to
grow markedly around and above the transition. This would
be a consistent hallmark for the reliability of the path integral
approach to the DNA Hamiltonian.

IV. DISCUSSION

The issue of the maximum �absolute� path amplitudes is
key in understanding the double helix denaturation �42� and
it has to be discussed consistently with the available experi-
mental data. As put forward above, the properties of the po-
tential VM, plotted in Fig. 1�b�, suggest which path ensemble

is physically meaningful.
Hydrogen bond stretchings are generally broken for

lengths 	2 Å. For such separation, the potential is flat with
a plateau value D	30 meV and the force between the bases
vanishes. Accordingly, larger amplitudes would yield no con-
tribution. Then, the bp breaking energy D is 	KBT above
room temperature. This justifies the parameter values used in
Fig. 1�b�. Largely positive paths would sample the flat por-
tion of VM and add constant terms to the action which do not
affect the free-energy derivatives.

On the other side, steric hindrance processes prevent x�
�
from being too negative. Paths x�
�	−0.14 Å also experi-
ence a value D	30 meV while larger negative paths en-
counter the hard-core repulsive side of VM. Here the latter
grows exponentially, thus yielding a large action which, in
turn, makes a vanishing contribution to Z.

These are the intuitive reasons to set a finite range which
inspire the computational method described in Sec. III.
Moreover, it is physically plausible that such range had to be
modulated by temperature effects, allowing for larger path
amplitudes at higher T. Saying Tc

� the denaturation tempera-
ture, the path displacements may reasonably vary in the
range x�
�� �xmin,xmax� with xmin	−0.14 Å and xmax
	2 Å around the crossover. The functions xmin
=−0.14 exp��T−Tc

�� /Tc
�� and xmax=2 exp��T−Tc

�� /Tc
�� pro-

vide suitable �although not unique� expressions to account
for linear temperature dependence in a window around Tc

�,
whereas larger deviations occur outside that window. xmin
and xmax are plotted in Fig. 1�a� taking for Tc

� the value given
by Eq. �2�. However, this assumption does not imply that the
melting occurs precisely at Tc. In fact the true denaturation
temperature �found below� does not coincide with the above
given Tc which stems from an analytic harmonic model.
Moreover, the specific choice for upper and lower bounds
has not to imply in principle that a transition exists nor it has
to force the transition to take place at Tc

�. Certainly, if the
denaturation occurs, a significant fraction of bps is expected
to be 	2 Å. This feature will be hereafter investigated.

Thus, after setting a temperature value, the program
searches for those paths 
x�
� ,x�
��� which lie inside the
range �xmin,xmax� for any 
� �0,�� and adds their contribu-
tion to Z. Such a check is done for any set of Fourier coef-
ficients which in fact defines a specific path. Had the entropy
not to have a positive derivative, the computation should be
rerun for a new number of integration points which, in turn,
leads to rebuild the ensemble of Fourier coefficients and to
repeat the procedure to filter the suitable paths. It is seen
numerically that the restriction due to xmax can be lifted with-
out affecting the physical properties whereas the lower
bound xmin is required in the computational method.

As a final output Neff is obtained versus T as shown in Fig.
2�a� for the same values D, a, K as in Figs. 1 and for three
stacking parameters � with �=0.35 Å−1 �29�. While all plots
begin with Neff�8000 at T=250 K, their slopes display a
remarkable dependence on � and, as a general feature, Neff is
higher for stronger anharmonicities. In particular, for the
case �=2, Neff increases at T	315 K. This feature is mir-
rored in the plot �Fig. 2�b�� of the specific heat which is a
significant hallmark for denaturation as it is proportional to
the differential melting curve �43�. For �=2, a peak is found
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FIG. 1. �Color online� �a� Lower and upper cutoffs �in Å� for the
paths, representing the base pairs transverse stretchings, versus tem-
perature; �b� Morse potential VM �in meV� versus path amplitude x.
D is in meV and a in Å−1.
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at the same T and in general, the specific heat displays a
sharp increase when the degree of cooperativity �measured
by Neff� markedly grows. The peak shifts toward lower T by
increasing �. This finding, shared by previous studies �22�, is
physically meaningful as systems with larger anharmonic
couplings should have a higher number of pairs which break
at lower T.

A. Phase transition

While the results displayed so far witness by themselves
reliability and consistency of the method, they also induce to
face the unresolved issue regarding the order of the denatur-
ation transition. Two questions need to be addressed:

�1� How does the entropy behave?
�2� To which extent do the thermodynamical properties

depend on the number of paths included in the calculation?
Or, how does the macroscopic system scales versus Neff?

Taking the intermediate plot, �=1 in Fig. 2, I have thus
progressively increased Neff over the value Neff=9920 at T
=260 K in Fig. 2�a�. While the T axis in the latter starts from
250 K, the 10 K shift upwards allows one to distinguish
among the three plots. T=260 K is then the lower bound in
the T window considered hereafter. Once the starting Neff is

set at the lower bound, the thermodynamical properties are
evaluated at higher T according to the procedure detailed
above.

In Fig. 3, the calculation begins with Neff=31792, a value
larger by a factor three than in Fig. 2. Figure 3�a� plots: �i�
the total number of paths versus T starting with 	3.2�106

at T=260 K; �ii� the number of paths whose amplitude is
larger than 1 Å; �iii� the number of paths whose amplitude is
larger than 2 Å. All curves increase versus T and show a
kink at Tc

�. This feature is more pronounced and evident than
in Fig. 2, confirming that denaturation is indeed a highly
cooperative phenomenon. While paths �1 Å already sample
the plateau of VM where the bps unbind, paths �2 Å cer-
tainly belong to broken pairs. Accordingly, the latter become
more numerous around and above Tc

�. Thus, approaching the
transition, the system incorporates a larger number of paths
with an increasing fraction of broad path amplitudes. As such
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fractions are considered reliable indicators of the order of the
denaturation transition, quantitative estimates are greatly rel-
evant. As the inset makes evident, the fractions of paths
�1 Å and �2 Å, respectively �normalized over N
 ·Neff�,
grow continuously versus T. Around Tc

�, one third of all paths
are larger than 1 Å: it means that either they are broken or
about to break. We see no steplike increase at Tc

� and this
behavior is fully consistent with the continuous entropy
growth shown in Fig. 3�b�. The slight irregularity appearing
in the entropy plot at Tc

� is responsible for the remarkable
peak in the specific heat plotted in Fig. 3�c�. The peak re-
mains pinned at Tc

�=363 K as in Fig. 2�b�. The inset shows
an enlargement with a temperature resolution which appreci-
ates 0.1 K. Finer partitions may be taken further increasing
computing time.

The results presented so far point to the occurrence of a
smooth crossover at Tc

�. While evidence is emerging for clas-
sifying the transition as of second order, the careful reader
may argue that the aforementioned question �2� is not yet
fully answered. I have then further increased the starting Neff:
all the obtained curves look like those presented in Fig. 3
with, at most, shifts of a few degrees in the location of Tc

�.
Figure 4 shows the results obtained for Neff=47 494 at T
=260 K: in this case Tc

�=352 K which makes the largest
observed shift with respect to Figs. 2 and 3. Note that 	8
�106 paths participate to the computation around Tc

�, with

37% being larger than 1 Å. Remarkably, 	18�106 paths
are accounted for at the largest T here considered.

Some features shown in the plots and drawn from the
whole numerical work are in order:

�i� The entropy is always a continuously increasing func-
tion of T whatever the starting value for Neff may be.

�ii� At Tc
�, the entropy always displays a slightly more

pronounced enhancement although there is no finite melting
entropy which would point to a first-order phase transition
�24�. The small entropy kink is instead responsible for the
peak in the specific heat. The crossover is smooth, the phase
transition appears to be of second order.

�iii� The entropy values are larger by including more paths
in the computation.

�iv� Above Tc
�, the entropy goes on growing but with

smaller gradient consistently with the fact that, as the strands
separation proceeds, the probability to add entropic effects is
reduced.

�v� The location of Tc
� slightly varies with increasing Neff

but the changes are not significant oscillating in the range
Tc

���350–365 K� for �=1.
While different choices for the stiffness parameters in the

PB Hamiltonian are not expected to change these qualitative
physical features, it may be instead worth investigating by
path integrals also Hamiltonian models with different stack-
ing potentials both for homogeneous and heterogeneous
DNA �44�.

V. CONCLUSION

The homogeneous DNA denaturation has been studied in
the path integral formalism by mapping the essential interac-
tions of the Peyrard-Bishop Hamiltonian onto the imaginary
time scale. While the nonlinearities in the stacking interac-
tions are recognized as a key feature of the Hamiltonian, the
path integral method permits to deal with the highly coop-
erative character of the denaturation by incorporating a very
high number of degrees of freedom. I have thought of the
transverse stretchings for the base pairs as time dependent
paths: in the imaginary time formalism, this amounts to in-
corporate the temperature effects in the base pairs displace-
ments. The path amplitudes are taken consistently with the
shape of the Morse potential modeling the hydrogen bonds.
Accordingly, I have set up a computational method to moni-
tor, versus temperature, the paths ensemble which mainly
contributes to the partition function, hence to the macro-
scopic equilibrium properties of the system. A temperature
window has been considered in which denaturation is ex-
pected to occur. Given the size of the paths ensemble at the
lower bound of such window, the second law of thermody-
namics has been invoked to build the ensemble at any larger
T. The method works self-consistently selecting the mini-
mum number of paths required �at any T� to pursue the goal,
that is the growing entropy constraint. There is no need to
add further paths to the partition function once such goal is
achieved: I feel that a minimum effort principle should hold.
Instead, the system physical properties may depend on the
initial ensemble size and care has been taken to unravel this
issue. Thus, the partition function and its derivatives have
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been computed by varying the boundary condition but no
significant variation in the physical behavior has been ob-
served. It is understood that the initial size should be large
enough to allow for the appearance of cooperative effects.
Remarkably, the ensemble size strongly grows around and
above the denaturation temperature. The denaturation of the
complementary strands always shows up as a smooth cross-
over whose location along the T axis may depend on the
stiffness of the stacking interaction. Focusing on the system
with moderate anharmonic stacking, it has been found that
�i� the entropy grows continuously versus T, �ii� the specific
heat displays a peak precisely at the same temperature for
which the path ensemble size sharply grows.

These results suggest that the denaturation in homoge-
neous DNA is a highly cooperative phenomenon with the
hallmarks of a second-order phase transition. Consistently,

the fraction of paths sampling the plateau of the Morse po-
tential grows continuously also around the denaturation tem-
perature. No steplike increase has been observed in the paths
fractions which describe the unbinding of the base pairs.
Eventually, I wish to emphasize that the thermodynamical
constraint applied on the system does not force a priori the
entropy to grow continuously. While the system autono-
mously selects at any T the total number of paths to fulfill
such constraint, both a step discontinuity and a continuous
behavior may in principle appear. The obtained plots are
therefore not an artifact of the method.

After testing the feasibility of the path integral approach
to a large size system as homogeneous DNA, I feel that the
presented formalism may be further improved/extended to
account for bubble formations in heterogeneous models with
inhomogeneous sequences.
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